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Different Ways o~ Looking
*

at the Electromun.— ‘ etic Vacuum——

P.W. Kilonni

Theoretical Di\”ision(T-12)

Los Alamos National Laborat~ry

Los Alamos. New Mexico 87117 U.S.A.

Abstract

Some thoughts on the electromagnetic vacuum are presented in connection

With the vacuum and source fields as alternative physical bases for

understanding spontaneous emission, the Lamb shift, CXwsimireffects, van der

Waals forces, and the “thermlization” of vacuum fluctuations for a uniformly

accelerated observer.

*Submitted for publication in the Proceedings of the Adriatico Research

Clmference on *’Vacuumin Nonrelativistic Natter-Raliation Systems,*’Trieste,

Italy, July 1987. This paper is based on a keynote lecture delivei.ed at the

Conference.



And sometimes it seemed that something never

yet seen yet long desired was about to

happen, that a veil would drop from it all;

but then it passed, nothing happened, the

riddle remained unsolved, the secret spell

unbroken..and still one hew nothing

perhaps, was still waiting and listening.

- Hermann Hesse, Narcissus and Goldmund—. —

1. The Purpose of this Essa~——

Field theory hfM taught US that vacuum is not a tranquil state of

nothingness, but rather a quantum state with fluctuations and physical

consequences. Alas, the universe itself my have sprung frwn a quantum

fluctuation. I shall discuss the electromuznetic vacuum. The discussion is

arranged according to the following outline:

2. Einstein and the Vacuum

3. Spontaneous Emission

4. The bmb Shift

5. &simir Effects

6. Van der Waals Forces

7. Qtvity-Modified Spontaneous Emission

8. Two Sides of aColn

9. COmutators

10. Accelerated observers

11. Where Do We Stand?

Among the questions I address are the following: What evidence do we hnve tkt



vacuum fluctuations have real physical consequences? Are there different ways

of thinking about these effects? Is there more to be lenrned from the

electromagnetic vacuum?

2. Einstein and the Vacuum—. —

It would be interesting if a historian would trace the development of our

present concept of the vacuum. It is not hard to find little examples of how

vacuum fluct~.mtionscame cl~se to

theory.

energy

example

For instance. Mulliken in

he could get a better fit

I will consider briefly a

being uncovered before the advent of quantum

1924 found that by including zero-point

to molecular vibrational spectra. As another

paper published by Einstein and Stern [1] in

1913, around the middle of Einstein’s long struggle

spec trum.

The modei considered by Einstein and Stern is

to understand th(s Planck

that of Einstein and Hopf,

[2] and consists simply of dipole OSCIllators free to move in one dimension.

The Interaction with radiation increases the kinetic energy of the dipoles,

but there is also a velocity-dependent force acting to slow down a particie

moving through the field. In equilibrium the averr~e rates at which these two

effects change the kinetic energy must cancel, and this condition yields an

equation for the (thermal) equilibrium spectral energy denskty p(u). The

equation is

(2.1)

where < H > is the average kinetic energy of a dipole oscillator of frequency

u in equilibrium, and my be related to p(LJ) by the equation

.
<H> = #c’’p((tJ)/w2 (2.2)



The solution of (2.1) is then the Rayleigb-Jeans spectrum:

P(V) =w%T/m2c3

which appears in this way

physics. However, Einstein and

(2.3)

to be an inevitable consequence of classical

Stern remarked that if a dipole oscillator

somehow has a zeio-point (T = O) energy

plus IXJin (2.1), then the equation for

k, so that <

p(u) becomes

6)*
p(u) - ~du = W2C3P(fAI)2/~%T + hwp(o)/3kT

H > is replaced by (2.2)

(2.4)

and the solution of this equation is the Planck formula.

Now it is not difficult to treat the Einstein-.Hopfmodel fully quantum

mechanically, and so to understand why the Einstein-Stern ansatz works: in

quantum theory both a dipole oscillator and a field mode of frequency u have a

zero-point energy ~fKJ,and it turns out that the sum, #XJ + ~fiu= ?XJ,is just

what Einstein and Stern found would have to be added to the classical theory

to get the Planck formula. [3] Thus it appears that the zero-point energy of a

field mode (and any other harmonic oscillator) must be ~fw in order for the

Planck formula to hold. Or, looked at another way, ~validity ~ the Planck——

formula @lies the existence ~ zero-mint (“vacuum*’)field enerm.—— —— — —.

3. SDontMeous Emission

Since in free space there are u2du/m2c3 modes of the field per unit

volume in the frequency interval [u, u + du], and each mode has a zero-point

energy ~fiwothere is an electromagnetic energy densi+,y



(&m2c3)(~i@Vdu = (ti3/2w2c3)Vdu =po(@Vdu (3.1)

in the frequency interval [u, u + du] in the volume V.

Ckn this vacuum field affect an atom? C!onsiderthe rate of stimulated

emission in a broadband field of spectral energy density p(u). This rate for a

transition of frequency U. is Bp(uo), where B = 4m2d2/3h2

coefficient and d is the transition dipole moment.

emission rate due to the vacuum field is presumably

is the Einstein B

Thus the stimulated

R“f =

where A is

Bpo(uo) = 2&3hc3 = ;A

the Einstein A coefficient for srxmtaneous emission.

(3.2)

In other words, if we are looking for physical manifestations of the

vacuum field, it seems that it might have something to do with spontaneous

emis~ion - but we only get the correct rate of spontaneous emission when

we calculate the rate of emission stimulated by the vacuum field.

Now let us take a rather different point of view about spontaneous

emission. A classical point dipole oscillator feels a radiation reaction field

%=( 2e/3c3)d%dt3 - (6m/e)d2~dt2 (3.3)

where bm is the electronsigneticnmss, and for n dipole oscillator of frequency

o this leads to a loss of dipole energy W due to radiation at the ratew

dW/dt =

To translate

strength f =

- (e2u~3mc3)W (3.4)

this into quantum theory we must “weight” (3,4) by the oscillator

2md2uo/he2 of the transition. [4] Then we arrive at the emission



rate

R = fW-lldW/dtl . (e2@@w3) (~200fie2) = 2d2u~/3iic3= iA , (3.5)
rr

due to radiation reaction. Note that Rrr = Rvf and that the A coefficient for

spontaneous emission is just

A =Rvf + Rrr

This suggests that both the vacuum field and radiation—— —-. .

snntaneous emission. This inference is correct, as

The Lamb Shift—— —

(3.6)

reaction are irmortant— .

we will see later.

An energy W = - ~?”fl,where ~ is the induced dipole moment, Is associated

with a polarizable particle in an electric field ~. Writing ~= a(u)~u for the

induced dipole moment, where a(o) is the Polarizability, we have W - - ~a(~)E~

and, if there is a continuous

w = - ; fa(@[4rp@)du]

..

distribution of field frequencies,

(4.1)

where we have taken l?:= 4wp(u)du.

For an atomic electron in level .I,therefore, we expect the level shift

P

due to the vacuum,

words W is the shift
J

Schrodinger equation

where a (u) is the polarizab~lity oi level j, In other
J

in energy - from the “bare” energy determined by the

without coupling to radiation - due to the vacuum field,



In other words still, ~j is the guadratic Stark shift due to the vacuum field—— —— —.— — —“

Using (3.1), and the Kramers-Heisenberg formula

for the polarizability, we arrive at the expression

(4.3)

(4.4)

The limit of a free electron may be obtained by taking the transition

frequencies ~uidI

photon frequencies

between electron bound states to be small compared with

u in (4.4):

(4.5)

1The Thomas-Reiche-Kuhn sum rule, (2m/3ii) d2 u~ ij ij
= 1, allows us to write Wfree

= (e%/wmc3)~duu. This is in fact just the vacuum field expectation value of

the term e2~/2mc2 in the Hamiltonian. In any case Wfree is independent of the

electron state j, and we therefore regard the difference W - Wfree as the
J

measurable level shift W’ of an electron in state j:
J

(4,6)



where we have introduced a cutoff frequency S2in our nonrelativistic approach.

(Obviously the nonrelativistic theory will brmkdownat photon frequencies u

x mc2fi.) Taking Q = mc2/h, Bethe [5] estimated (4.6) for the hydrogen atom

and his estimate was in excellent agreement with the measured Lamb shift. The

fact that the “Bethe log” (4.6) works so well implies that the Lamb shift is

basically a nonrelativistic, vacuum-field effect. [6]

Once again, however, a different approach is possible (and successful).

‘~”~ and took i?In deriving the Bethe lcg we began with the expression W = - =

to be the vacuum electric field. Now let us forget the vacuum and use the

radiation reaction field for ~. For a point dipole ~(t) this field is easily

shown to ba given by ~ =%) + ~), where [7]

(4.7)

is the positive-frequency part of
% %

-) =
%
+)T is

and the

negative-frequency part. Here the sum is over all field modes for the

quantizaticnvolumeV, and+~A is a unit polarization vector for a mode with
*

wave vector ~ and polarization index A (= 1,2). (We can evaluate (4.7)

explicitly and arrive at (3.3) with ~ = e;, but instead we take a perturbative

approach that al!ows us to calculate a quantum level shift.) Then

where m,n (= 1,2,3) label Cartesian coordinates end we follow the summation



convention for repeated indices m,n.

To carry these considerations over to quantum theory we replace

dm(t)dn(tl) in (4.8) by the expectation value <jldm(t)dn(tl)lj>. In the

approximation of unperturbed motion this is just ia dji jimdijneW[i’’ji(t-tl)]

sumned over a complete set of states i, [7] and so for an atom instate j the

level shift due to radiation reaction is—— .—

11 “a 2fdtlsin(~k~ji)(tl-t)‘j = (27r/v)
i r,~uji’+% ijl

where we have used

(4.9)

(4.10)

for t >> lwjil-l,where P denotes the Quchy principal part implicit in (4.9).

In the mode continuum limit I JI+ (V/87r3) d% we obtain from (4.9) the
~,A A

expression

(4.11)

and therefore



(4.12)

This is not the Bethe log expression (4.6); one more subtraction, namely mass

renormalization, is required. This is perhaps not surprising, since we are

dealing now with the radiation reaction field, which brings in an “extra”

electromagnetic

should subtract

mass. The electromagnetic

from (4.12) the energy

mass term in (3.3) implies that we

AW
j
= <jlp2/2m -p2/tiolj> S- (Zitim]<jlp2/2mlj>= - (2e2Q/3m2c3)<jlp21j>

(4.13)

in order to avoid “double counting” the electromagnetic self-energy in our

radiation reaction approach. Here m and m~ are respectively the renormalized

and bare mass of the electron ( m = m. + bin).Thus

which is precisely the Bethe expression (4.6).

What this hodgepodge of classical

that the main portion of the Iximb shift

radiation reaction field of the atomic

and quantum

may also

considerations

be attributed

(4.14)

shows iS

to the

electron. It should be clear by now

what I am leading up to: effects usuallv attributed @ vacuum field—.

fluctuations mm instead ~ attributed to radiation reaction.— —— —.—

5. Casimir Effects

When we consider Casimir effects this alternative explanation seems at



first implausible. Such effects are typically explained in terms of changes in

the vacuum field configuration due to the presence of matter. These changes

result in forces between material systems such as polarizable pqrticles or

conducting plates.

The thing that makes a source-field interpretation seem implausible at

first is that these forces depend on distances between particles and/or

plates, and we are used to thinking about radiation reaction in idealized free

space, where of course
%ZR

dons not depend on where a particle is loca;ed. 13ut

in general radiation d-depend on where the particle is located.

Consider, for instance, an atom at a distance d from a perfectly

conducting plate. For the z-component of the radiation reaction field we

obtain [7]

%R,z
= (2e/3c3)d3z/dt3 - (4Whrc3)#z/dt2 - (2e/4d2c)~(t-2d/c)

- (2e/8d3)z(t-2d/c) (5.1)

This is nothing but the free-space (d +@) result plus the retarded dipole

field from an amge etom at a distance d behind the plate. The

positive-frequency part of the source field (5.1) is

4?.= s- (2e/vc3) duw2(1/3 - COSUX/tJ2X2+ sinwx/u3x3)

x ‘&[t’)ei-t)

where x s 2d/c. Therefore from (4,8) the distance-dependent

(5.2)

portion of Y for

an atom in state J Is



Y?j(d)= - s(2e2/mc3) duu2(cosm/02x2 - sinux/u3x3) x

;dtl<jlz(t);[tO]lj>ei@~t’-t)+.. . (5.3)
o

-here ... indicates contr$.butionsfrom the x and y components of the atomic

dipole. In the approximation of unperturbed motion discussed just before

equation (4.9) we obtain

+C.c. +...

This 1s the expression obtained by &simir

evalua’:ed(5,4) ii]a standard way by introducing

the Iiniit-r-.0+ after doing the integral. This

energy

WJ(d) = - 3aJhc/8md4

(5.4)

and Polder in 1948. [8] They

a factor e
-Tk

and then taklrig

led to the Ckimtr-Polder

(5.5)

where a,j is the static (0+0) polarizability for state j. Thus, by allowing

for the position dependence of radiation reaction (equation (5,1)), we can

derive the ~simir-Polder force,

What about the Casimir force between two conducting plates? The approach

based on vacuum field fluctuations considers the total field energy (~hu per

mode) when the plates are separated by a distance d, minus the energy when d +

~, and this leads to the famous C%islmirforce [9]

F = -whc/480d4 (5.G)



per unit area. This is a macroscopic approach in that it deals with field

modes satisfying boundary conditions, without treating the plates in any sort

of “atomistic” fashion. That is, the plates serve only to define the boundary

conditions. In a similar fashion one

approach, making no reference at all

out by Schwinger, e~ a~. within

can carry out a macroscopic source field—.

to the vacuum field. This has been worked

the context of Schwinger”s source theory,

“where the vacuum is regarded as truly a state with all physical properties

equa1 to zero.” [10] The point, egain, is that we can explain a “vacuum field

effect” in terms of source fields rather than vacuum fields.

6.

In

Van der Waals Forces. . —. — —

In general the (Coulomb-gauge) vector potential operator may be written

the form

(6.1)

where the (orthonormal) mode funciions ~’(~) satiisfy the Helmholtz equation

(6,2)

the transversally condition V*P=(2) w o, and the appropriate boundnry

conditions for the electric and mgnetic fields; ~a and :: are the

annihilation and creation operators for mode a, and the caret (’) is used to

indicate an operator,

In the presence of sources the Helsenberg equation of motion for &a(t)

leads to the folluwing cxpres~ion for the vector potential corresponding to



the radiation reaction field acting on a point particle of charge e:

In the case of free space we have ?’(:) .v-W$&~ , and we can evaluate

(6.3) and use ~ = - (l/c)+~ to obtain (3.3).

In the preceding section the appropriate mode functions ~(~) were those
a

app~-opriateto a half-space bounded by a perfectly conducting plane. using

these modes, we obtain (5.1); of course we can also write (5.1) or~physical

grounds, without resorting to a modal decomposition of the field.

Now for the van der Waals interaction between two atoms we are interested

in the radiation reaction field on a ground-state atom A when there is some

other atom B a distance d away. So we want to know how atom B affects the

modes of the field acting on A. A ground-state atom B modifies the free-space

mode functions by adding to each plane wave a dip~le field due to the

scatterer:

- r-2(&M*Y);( llkr + 3i/k2r2 - 3/k3r3)] (6.4)

where ~ mpeciflem the position of atom B, ~= ~ - ~, and aB(u) is the

polarizability of the ground state of atom B, Using thes(~modlfied (by atomB)

mode functions, we can calculate the radiation reaction field

the presence of atom B, nnd therefore the radiative level shifts

For the ground-state level shift of atom A we obtain just the

for atom A in

of atom A,

London result



W(d) proportional to d
-6

for d .~O, whereas for large d we obtain the retarded

van der Waals interaction proportional to d‘7 [8]:

w(d)=- 23hcuAa.#4rd7 (6.5)

where cAand~are the

Waals interaction may

reaction, provided we

depends on the position

static polarizabilities of the atoms. Thus the van der

be understood from the perspective of radiation

recognize that the radiation reaction field for atom A

and Polarizability of atom B. That is, we must keep in

mind, as in the preceding section,

Qnnp rticle depends on the modal.——

~ & electromagnetic environment

that the field of—— —

properties of the.—

gf th~ particle.

radiation reaction actlrtq

field, m@ consequently

7. C%witv-ModifierlS~ontaneous Emission

If the radiation reaction field depends on the environment of the

emitter, then so too will the radiation rate. This means that an excited atom

near a conducting wall or inside a cavity, for example, will have a

spontaneous emission rate different from the Einstein A coefficient

appropriate to free space,

This cavity-modified spontaneous emission has been observed

experlmentttlly. Delightfully simpla experiments by Drexhage, [11] for

Instmlce, involved the deposition of molecular monolayer on reflecting

plates, The distance of a fluorescing molecule from the plate could be set

fairly accurately according to the number of times the plate was dipped in n

solution before the monolayor was added, In thio way the emission rate could

be monitored ao a function of the distance of the emitter from the reflecting

plate. The theory is quite oimple if idealized conditions are ansumed, and in

fact the alteration of t.hoemiauion rmte could be predicted using m ctmplc,



classical picture of a dipole oscillator mar U reflecting wall.

More recent experimental work in this area of environmentally modif$ed

Spontaneouss emission has been undertaken by Kleppner, [12] Xaroche, [13] and

Delfartini[14] and their collaborators.

The field (6.1) is the total field. That is, aa(t) has a homogeneous

solution plus a source term. The source term is associated with radia:ion

reaction, whereas the homogeneous part represents the external field. The

homogeneous solution must always be accounted for, because even in the absence

of an applied field there is still the vacuum field. The mode expansion (6.1)

then shows that the vacuum field, like the radiation reaction field, depends—— —. .

~ the mode functions ~U[~~, ad therefore ~ the atom’s environment. If we—— .—

choose to think about spontaneous emission in terms of vacuum field

fluctuations, then that environmental dependence explains cavity-modified

spontaneous emission.

This seems so obvious, and yet when Drexhage first reported his

experimental results some theorists argued that no modification of a

spontaneous emission rate was pocsihle: how could the spontaneous emission of

a photon be affected by the atom’s environment, since the atom can only “see”

its surroundings by emitting a photon in the first place? The gainsayers did

not understand very deeply what n photon is. I also recall n sentence from my

undergraduate modern physics textbook: “T’hetransition rate for spontaneous

emission is en inherent characteristic of the atom and is not influenced by

tho environment in which the atom is placed,” [15] That sentence was deleted

in subsequent editions.

8’X)YQWQL*W

HOW iIJit that we can explain these effectrn in terms of rndiat,ion

raaction, when for nearly half a century people have succe~sfully explained



them in terms of vacuum field fluctuations.?

The answer to this question was found independently and practically

simultaneously in 1973 by Senitzky, [16] Smith, [17] and the present author.

[17,1S] The motivation for this work grew

theory of spontaneous emission. [19] In

attributed to radiation reaction, but the

out of E.T. Jaynes” neoclassical

this theory spontaneous emission was

radiation reaction field was treated

as a classical field, and it was assumed that there is no vacuum [source-free)

field. (This is really X1 assumption, not an inevitable feature of classical

field theory.) Although the neoclassical theory explains some important

features of spontaneous emission, it was deficient in certain respects; for

Instance, it could not account for the observed photon polarization

correlations in a three-level cascade. [20] In 1972 Ackerhalt, eJ Q. [21]

showed that radiation reaction nevertheless offers a valid basis for

understanding spontaneous emission, provided the radiation reaction field &— .

hand1ed properlv a~ ~ guantum-mechanical ~rator. This showed that radiation

radiation was a legitimte way of understanding spontaneous emission, and the

question then was to reconcile such an interpretation with the old idea that

spontaneous emission is triggered by vacuum field fluctuations.

It was shown in the case of spontaneous emission [16,17] that thn

physical interpretation suggestea by qmntum electrodynamics is more or less a

consequence of the way we choose to order 90nmluting atomic and field

operators, For instance,

reaction, because the

values of interest; this

However, the role of

a norml ordoring emphasizes the role of radiation

vacuum field does not contribute to the expectation

wttsthe case in the work of Ackerhalt, e~ a~.

the vacuum

symmetrical ordering of atomic and

values of vacuum-field operators

contributions to the radiative decay

field could be

field operators,

(e.g., <sat> ) are

and level shifts,

emphasized by using n

for then expectation

found to mke explicit



It would be inappropriate to reproduce here the alge”bra leading up to

this reconciliation of the vacuum and source-field Interpretations, since it

is readily available in the literature. [16-18, 22] I will just ljst a few

salient points:

(1) The level shifts and widths can be attributed exclusively to radiation

reaction or the vacuum field, or to llnear combinations of the two.

For instance, we can say that the majc’:(nonrelativistic)portion

of the Lamb shift is i parts a source-field effect and (1 - i) parts

a vacuum field effect.

(2) There is no ordering that attributes the radiative decay of a level

entirely to the vacuum field.

(3) Al1 these interpretational results rest on the usual sort of weak-

coupling approximations used in the quantum theory of decaying states.

(4) These results are obtained In the Heisenberg picture, wherm questions

of physical Interpretion are most conveniently addressed by analcgy

with classical theory, In tha Sch%dinger picture. on the other hand,

one can calculate the same things but the physical interpretation is

less amenable to classical-like interpretations.

(6) The vacuum field and radiation reaction nuy be regarded in a sense es

“two sides of the same coin.” [16] There is an underlying reason for

this intimtte connection, namely a fluctuation-dissipation

relation that can be expressed in terms of conmlutationrelations,



We now turn our attention to the last point.

9. Camnutators

may

us

The intimate connection between radiation reaction and the vacuum field

be traced to the fact that the vacuum spectral energy density PO(U) goes

the third power of u (equation (3.1)), while the radiation reaction field

goesas the third derivative of~aftermss renormalization (equation (3.3)).

This in turn is due to the fact that both fields derive from the same mode

expansion (6.1). (In principle, of course, a mode expansion is unnecessary,

but that’s beside the point i ~rour discussion here.)

Indeed this kinship is required for the very consistencyof the quantum

theory of radiation. Consider

nonrelativistic electron in free

where ~ = 2e2/3mc3 and 60

homogeneous solution of

field strength. Writing &C

the Heisenberg equation of motion for a

space:

A

(e/m)Eo (9.1)

for ~(t), it is easily shown

is the “vacuum” electric field operator, i.e., the

the Maxwell (Heisenberg) equation for the electric

,(t)as a sum over all field modes, and then solving

[i(t),j(t)] = (8m2i/3m)

This result is no surprise,

vacuum and source fields. If

that C7]

w

hwoW[u3(l+#(i?)]=,, (9.2)
o

but it puts in~o sharper focus the kinship of the

instance, then po(o) would have to be proportional to u instead of U3 to

mmintain the canonical commutation relation between ~ and ~,



In fact this may be understood from the general fluctuation-dissipation

theorem [20] for linearly dissipative systems. [7, 21] Indeed we can derive

the (T = O) fluctuation-dissipation relation j,~ general by demanding the

preservation of canonical commutation rules in the presence of a dissipative

(fluctuating) force. Whichever way we look at it, the intimate relation

between ~. and
h

is required for the logical consistency of the quantum

theory of matter-field interactions. The work reported in References [16 - 18]

was in a sense a rediscovery, In a gp~’:~fi~ context, of the

fluctuation-dissipation connection. Incidentally this connection makes it

clear that if the vacuum field depends on the electromagnetic envirorument,

then so too must the radiation reaction if comutatcirs are tG be preserved

everywhere.

(Recently 1t ‘hasbeen written that some “fals~] aqmmpt ions” have been

nwidein the evaluation of [~, ~] from the equation of motion of an electron in

the field ;O + ~. [23] The objection appears to center on my ignoring the

homogeneous solution,
;om’

of (9,1) in calculating [9.2). Being aware of the

fact that the solution of a differential equation Iu composed of a homogeneous

part and an inhomogeneous part, I wish to note here that the important

assumption is the independence of ;Om and ;.. Under this assumption

[;omO ~o] is ~denti~llY zero ~d it is *SY to show ~lIeII ~~t [k) D h)]

is equal to (9.2). In any case the consideration of ~om in no way affects the

fluctuation-dissipationconnection.)

10. #acceleratedobserver~

An atom In a thermal field characterized by a temperature T has its

radiative level widths and shifts modified from their zero-tmperature values.

For instance, the spontaneous emtssion rate for a transition of frequency fAJ
o

becmes



(lo.la)

(10.lb)

where A is the usual (T = O) emission rate. This temperature effect is

negligible for practical purposes because ; is very small at optical

frequencies.

Now when a physical system is uniformly accelerated in vacuum it acts as

if it were inwnsrsedin a ther th at temperature [24]

T = ?uA2mkc
a

(10.2)

where a is the (congt~t) acceleration r~lative to an ~nel.t~alframe and k is

Boltzmnn’s constant, This remarkable effect has been examined in detail by

Sciarm, et al [25] and has been elucidated from the standpoint of random——”~

electrodynamics by Boyer. [26] Based on this result we might expect that for a

uniformly accelerated atom the spontaneous emission rate becomes

A’ =A(2na+ 1)

k lkTa
n =(eo - 1)-1
a

(lo.3a)

(10.3b)

Let us now see what we get by doing a calculation.

Consider a two-state atom coupled to the electronwigneticfield through

the interaction -e~o%, The Heisenberg equations of motion for the two-state

transition operators uand uz are [27]



‘(-)( t);Z(t)]‘(+)(t) + EJ$(t) = - itio~(t)- (ifi)p&z(t)Ej

‘(+)(t)]*(-l(t);(t) -Y(t)~Ji=(t) = - WVPJ[EJ

(10.4)

(10.5)

‘(-)(t) are
“(+)(t) -d E

where Z is the transition dipole moment and E

respectively the positive- and negative-frequency parts of the total (free

field plus source) electric field operator. In writing (10.4] and (10.5) we

have normally ordered these operators and made the “rotating-wave

““(+), which corresponds to theapproximateion’” of neglecting terms such as OE

simultaneous lowering of both atomic and field excitation. We have the

‘(-) = ~:+)[qt:‘(+l(t)o with Eifollowing expression for Ei

q++t) = i:)(t) + iy(t) (10.6)

where so is the vacuum electric field operator and ~~ is the field due to the

source (atom):

t

i,$+)(t) = (i/4r2&kipi@jj J- kikj/k2) dt’[~(t’) +~t(t’)]e
iu(t’-t)

o

(10.7)

For present purposes it is convenient to cast (10.7) in a somew~t

different form:

fdt’sx(t’)<~$)( tf:;)(t’)>;(+)(t) = Wmio
flj

(10.8)

where ~x * ~ + ~t and the expectation value on the right refers to the vacuum



state of the field. (The atomic state is arbitrary because ~~)(t) does not

act on atomic states.) Since

~~)(t)lvac> = <vatl;~~](t) = O

we can write (10.8) equivalently a~

s:;)(t) = {ifi)~~ }dt’~x(t’)<~oi(t)~oj(t’)>
o

(10.9)

(lo.10)

Of course fro(t)is actually the source-free electric field operator ~o(~,t) at

the coordinate ~ =

usual electric-dipole

O of the atom,

approximation we

t

which is taken

are employing.

as a point object in the

Thus

A

(10.11)i~4t) = (i/h)Jli Spix(t’)<ioi(ost)ioj(o.tw

‘T’hisequation relates the source field to the free-field correlation function——

- another e- of the intimate relation between radiation reaction and the..— — —.

vacuum field!——

Equations

one form or

(10.4) - (10.6) and (10.11) have no known exact solution. In

other virtually all treatments use some variant of the original

Weisskopf-Wigner approximation. In the present formulation this amounts to the

replacement

;(t’) +~(t)e
-i(IJo(t’-t)

I(II(to-t)~t(t’) +~t(t)e o

(Io.l!%l)

(10.12b)



in the integral over t’ in (10.7); this approximation derives from (10.4)

under the assumption of weak (compared with tie) atom-field coupling. Using

(10.12) in (10.11), we have

t

i:;)(t) s -itJo(t*-t)
~ (ifi)vi~(t) ~dt‘<;oi(O,t)~oJ(O,t‘)>e (lo.13)

in the rotating-wave approximation, and from (10.4) and (10.!3)it then follows

that

t

<;(t)>=- iao<;(t)> -- (P~PJfi2)<~(t)>)t’<60i(0, t)fioj(O,t*)>e-iuo(t‘-t)

(10.14)

From this we may identify, within the Weisskopf-Wigner approximation, the

spontaneous decay rate

A = !dt”D(t’-t)cos@o(t’-t) (t +~)
o

[10.15)

where

D(t’-t) = (@iPJfi2)<ioi(oot)t(o,t‘)> (10.16)

For our purposes it will simplify things somewhat to use the correlation

function of the vector potential operator and write



DA(t*-t) = (aivjfizc%ioi(oo t)ioj(o.t‘)> (10.17)

instead of (10.16) in (10.15). (This leads to a simplification of thv algebra

below.)

Now

DA(t’-t) =G(%t’; ~,t)~,= ~

where

=- (jl%j4’3fic2][(t’-t)z - lWq/c2J-l

(10.18)

(10,19)

I have replaced a sum

(and WIthout intending

Cansider now an atom undergoing uniform acceleration relative to an

inertial frame in which it is

(inertial)

dv/dt

over polarizations by an effective value for simplicity

this to be a fully rigorous or complete calculation),

lab frame is given

2 2 3/2
= a(l -v/c)

instantaneouslyat rest, Its acceleration in the

by

(10.20)

For constant acceleration n, the velocity v and position x in the lab frame

follow from (10.20) by simple integrations, We can also obtain the time t in

the lab frame from the relation dT = dt~~- for the proper time

Interval d7. The result.of these mnipultitions js the parametrization



t(r) = (c/a)sinh(aT/c) (10.21a)

x(T) = (c2/a)cosh(a~/c) . (10.21b)

if we choose t(7 = O) = O and X(T = O) = c2/a for tb.is so-called hyper’oolic

motion. Equations (10.21) imply

[(t”-t)z -

Now for an

00
P

p-212]-1= (a2/c2)csch2[a(7‘-T)/2c]

atom in hyperbolic motion we write (10.15) as

(10.22)

(10.23)A’ = Jd#DA(#-T)coswo( ~’’-T)
o

and use (10,18), (10.19), and (10.22):

m

A’=- (~26&i2/h’hC5) $T ‘CSCh2[El(T’-T) /2C]COwJT’-T) (T + ~)

= (@2~~/3hn3)coth(wcwo/a) = Acoth(muota) = Acoth(fwo/2kTa)

= A(2na + 1) (10.24)

which is precisely (10,3), That 1s, ~ emissloq ~ ~B

~QS@SML@a&l!!luw uwfLJ2!!l ERMha LhQElMAL WQL

IemDerature&OQ@Ui,

If we think of spontaneous emis~ion as a consequence of vocuum f~cld

fluctuations, we can interpret this result as follows” for an acccleruted



observer the quantum vacuum fluctuations are “promoted” to the level of “real”

thermal fluctautions. [25]

When ther- is no acceleration the atom does not absorb ener~ from the

~c~~.i~because the vacuum field fluctuations are effectively Cancelled by

radiation reaction. [22] For an accelerated atom this balance is broken and

there & absorption from the vacuum - to the extent that the atom reaches a

Boltzmann distribution at temperature I’a.

11. Where Do We Stand’?.—. . . —

Welton in 1948 stated that spontaneous emission “can be thought of as

forced emission taking place under the action of the fluctuating [vacuum]

field.” [6] Over and over again one finds similar remarks in the 1iterature.

[28] Yet if we take this idea seriously and calculate the emission rttte due to

the vacuum field in a naive sort of way, we find only ~ the Einstein A

coefficient. (Section 3) Furthermore this picture offers no explanation as to

why there is no spontaneous ftbsorDtioq from the vacuum field. [22]

An older and more classically mottvated interpretation of spontaneous

emission attributes this phenomenon to radiation reaction. [29] The idea, more

or less, is that tqmntaneous emission ia simply a consequenc~ of the fact that

oscillating dipoles radiate. But we -ot uma ~ electrodynu.micu here

- wc get erroneous rernultz if we do. [22] For this reaoon, perhap~, the

vacuum-field interpretation eventually won out,

The idea that npontmneoun omiseion my be attributed to the vncuum

electromagnetic field ham also been criticized by Ginzburg - beginning in 1!139

[30] and then again in 19S3. [31] In particular, he refers to the “1/2

discrepancy” notod earlier. He ttlBo note~, arr thn present author hm on

eaveral occasions, [22] that nn unobjectionable explannt.ion of spontmneoue

omission was given by Fermi in his importnnt reviriwnrticle in 1932, [32]



Quoting Ginzburg, “Spontaneous radiation appears because the state in which a

mechanical subsystem (an atom, a moving charge, etc.) is at some level ... but

the radiation field ... is absent, is not a stationary eigenstate of the

complete system (the mechanical subsystem + the electromagnetic field).” (In

connection with his 1939 articles on the nature of spontaneous emission,

Ginzburg writes that, *’These articles were the first ones I ever wrote, and

naturally the memory of them as a first love in theoretical physics stimulated

me to a significant degree after four decades to write the present note.”

[31])

I believe it is fuir to say that since 1973 we have had a more

sophisticated understanding of why spontaneous emission occurs. We now

understand in what sense the two alder physical interpretations of spontaneous

emission were valid, and we can extend the newer interpretation to other

“vacuum-field effects,” such as van der Weals forces.

From this and other problems in quantum optics we have come ta better

appreciate the important differences between positive- and negative frequency

parts of the field in classical and quantum electrodynamics, If we always use

a synsnetric ordering of these operators we can see clearly, for instance, why

the claseic.al theory of random electrodynamics [33] has enjoyed considorablo

success. [22] Various other orderings give different weights to the vacuum and

source fields when we try to iilterpret the raoults of a r~lculationt To

mphmize as much as possiblo thm classic~l-like aspects of tho vacuum and

sourcm fields, we can choose a uynsnetric ordering at every stage of m

calculation, [34]

From another point of view all of thin is unimportant bscause we can

calculate whatever we need In the t3chr6dingel* or interaction picture, where we

are relatively safe from questions of clarnsical-llkc, intuitive int.erpretions

of spontaneous emirnsion, van der Wunlo forces, etc. Sfttce I rnnpect that



philosophy but do not myself subscribe to it, I will not discuss it further

here.

On the experimental side, it IS not possible to distinguish between

“vacuum” and “source” effects in this context. What is important, of course,

is that these effects are real. However, I should point out that the

experimental data for the Ckisimir force between two plates may not be as

conclusive as some of us had thought. Zajonc [35] has noted that the data from

$parnaay’s experiments [36] are in better agreement with the London-vander

Waals force (d-3) than the Qisimir [d”-4). He plans to perform such experiments

with greater precision.

Is there anything more to be learned, really, about the vacuum

electrotmgnetic field? Obviously it would be presumptuous of me to offer an

answer to that question, I will instead suggest that these ideam my provide

useful intuitive guides in QCD, where Clneimir-type effects have recently been

of some interest in connection wit)l quark confinement,
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